
Journal of Sound and <ibration (2000) 238(3), 529}539
doi:10.1006/jsvi.2000.3009, available online at http://www.idealibrary.com on
LETTERS TO THE EDITOR

CLOSED-FORM SOLUTIONS FOR NATURAL
FREQUENCY FOR INHOMOGENEOUS BEAMS WITH
ONE SLIDING SUPPORT AND THE OTHER PINNED

I. ELISHAKOFF

Department of Mechanical Engineering, Florida Atlantic ;niversity, Boca Raton,
F¸ 33431-0991, ;.S.A.

AND

R. BECQUET

¸aboratoire de Recherches et Applications en Mecanique Avancee, Institut Francais de Mecanique
Avancee, Aubiere F-63175, France

(Received 23 March 2000)
1. INTRODUCTION

Closed-form solutions for non-homogeneous beams have been obtained recently by
Elishako! and Rollot [1] and Elishako! and Candan [2]. In particular, reference [1] dealt
with stability of inhomogeneous columns, whereas reference [2] was devoted to their
vibration. Reference [2] contained both deterministic and probabilistic formulations, with
deterministic relationship serving as a transfer function for the probabilistic calculations. In
both cases, polynomial representation of the mode shape was postulated, and a closed-form
solution was obtained by formulating an inverse vibration problem. In this study, we deal
with vibrations of a beam that has sliding support on the left end and pinned support on the
right end. Here we demand a function that satis"es all boundary conditions, to serve as
a mode shape of the vibrating beam. We then construct an inhomogeneous beam that has
the postulated function as the mode shape. It is shown, remarkably, that the expression of
the natural frequency of the sliding } pinned beam coalesces with that of the pinned}pinned
beam, the latter being determined in reference [2]. Speci"c cases of variations of material
density are given, for constant, linear, parabolic, cubic and quartic variations. These
constitute particular cases. The general case is also treated, when the variation is at least
quintic. The closed-form rational expressions for fundamental natural frequencies are
derived for all above cases.

2. FORMULATION, OF THE PROBLEM

The governing di!erential equation of the dynamic behavior of a beam (assuming that the
cross-sectional area A of beam is constant, as well as the moment of inertia I) is

d2

dm2 CE(m)
d2w (m)

dm2 D!k¸4o(m)w(m)"0 (1)
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where w (m) is the mode shape, m the non-dimensional co-ordinate (m"x/¸), ¸ the length,
E(m) the Young's modulus, and o (m) the density. Moreover,

k"u2A/I (2)

is the frequency coe$cient where u2 is the sought natural frequency. In this study, we
assume that o (m), E (m) and w (m) are polynomial functions, given by:

o (m)"
m
+
i/0

a
i
mi, E(m)"

n
+
i/0

b
i
mi, w(m)"

p
+
i/0

w
i
mi, (3}5)

where m, n and p are, respectively, the coe$cients of o (m), E(m) and w (m). These are linked by
the orders of the derivatives of equation (1), namely n!m"4.

3. BOUNDARY CONDITIONS

The boundary conditions are

w@(0)"0, w@@@(0)"0, w(1)"0, wA(1)"0. (6}9)

We have four boundary conditions, so we must choose at least p"4. One can check that
the following polynomial function agrees with the boundary conditions (6)} (9):

w (m)"1!6
5
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5
m4 (10)

4. SOLUTION OF THE DIFFERENTIAL EQUATION

Equation (1) with the polynomial functions o (m), E (m) and w (m) yields
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The equations above must be satis"ed for any m, so we have for each ith power of m the
following equations:
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2
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m
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m
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Note that equation (16) is valid only for 4)i)m. But, we must have m*5 in order to
employ the above general equations. The explanation of why general equations are valid for
m*5 will be given at a later stage.

From equations (12)} (20), we have m#5 relations between the coe$cients a
i
and b

i
,

these having a recursive form between b
i

and b
i`2

. The sole unknown is the natural
frequency coe$cient k. Thus, there must be other relations between a

i
and b

i
to assure the

compatibility of equations (12)}(20). These relations will be formulated at a later stage.
We "rst treat the cases in which m(5. The general case will be treated in section 6.

5. THE DEGREE OF THE MATERIAL DENSITY POLYNOMIAL IS LESS THAN FIVE

5.1. UNIFORM DENSITY (m"0)

In this sub-case, E (m) and o (m) read

o(m)"a
0
, E(m)"

4
+
i/0

b
i
mi. (21)

By the substitution of equation (21) into equation (1), we obtain
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We obtained "ve equations for six unknowns: b
0
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1
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2
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3
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4
and k. We take b

4
to be an

arbitrary constant. The coe$cients b
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then become
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The fundamental natural frequency is

u2"360Ib
4
/A¸4a

0
(32)

Figure 1 depicts the variation of E (m)/b
4
.

5.2. LINEARLY VARYING DENSITY (m"1)

Here, E(m) and o (m) are given by
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Figure 1. Variation of E(m)/b
4
, m3[0; 1], for the constant density.
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The substitution of equation (33) into equation (1) yields
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We have six equations with seven unknowns, b
0
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1
, b
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3
, b

4
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5
and k. The coe$cient b
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taken as arbitrary constant. Then the solution of the set (34)} (39) is expressed as
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The fundamental natural frequency is expressed by the formula

u2"504Ib
5
/A¸4a

1
. (46)

To illustrate this case, Figure 2 portrays the function E(m)/b
5

for a
0
"a

1
"1.

5.3. PARABOLICALLY VARYING DENSITY (m"2)

The density and the elastic modulus are expressed as
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Figure 2. Variation of E(m)/b
5
, m3[0; 1], for the linear variation of the density; o (m)"1#m.
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The substitution of equation (47) into equation (1) results in

24(b
0
!b

2
)!5k¸4a

0
"0, 72(b

1
!b

3
)!5k¸4a

1
"0, (48, 49)

144(b
2
!b

4
)#k¸4(6a

0
!5a

2
)"0, 240(b

3
!b

5
)#6k¸4a

1
"0, (50, 51)

360(b
4
!b

6
)#k¸4(6a

2
!a

0
)"0, 504b

5
!k¸4a

1
"0, 672b

6
!k¸4a

2
"0.

(52}54)

We note that there are seven equations for eight unknowns, one of which, namely b
6
is taken

here as an arbitrary constant. Hence,
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leading to the fundamental natural frequency

u2"672Ib
6
/(A¸4a

2
). (62)

Figure 3 illustrates the dependence E (m)/b
6

for the speci"c case a
0
"a

1
"a

2
"1.

5.4. MATERIAL DENSITY AS A CUBIC POLYNOMIAL (m"3)

In this particular case, E (m) and o (m) are represented as the following polynomial
functions:
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Figure 3. Variation of E(m)/b
6
, m3[0; 1], for the parabolic variation of the density; o (m)"1#m#m2.
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The requirement that equation (1) is valid for every m imposes
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The coe$cients b
i
, to assure the compatibility of equation (64)}(71), must satisfy the

following relations, expressed in terms of b
7
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The fundamental natural frequency is

u2"864Ib
7
/A¸4a

3
. (80)

The dependence E(m)/b
7

for the speci"c case a
j
"1 versus m is shown in Figure 4.



Figure 4. Variation of E(m)/b
7
, m3[0; 1], for the cubic variation of the density; o (m)"1#m#m2#m3.
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5.5. MATERIAL DENSITY AS A QUARTIC POLYNIMIAL (m"4)

In these circumstance, E(m) and o (m) are polynomial functions given by
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Substitution of the above expressions into the equation (1) results in
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We have nine equations for eight unknowns, b
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Figure 5. Variation of E(m)/b
8
, m3[0; 1], for the quintic variation of the density; o(m)"1#m#m2#m3#m4.
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The fundamental natural frequency is given by

u2"1080Ib
8
/A¸4a

4
. (100)

Figure 5 presents the ratio E(m)/b
8
for a

j
"1. In the following, we present the general case,

with 5)i)m.

6. GENERAL CASE: COMPATIBILITY CONDITIONS

For the unknown k, we have di!erent expressions stemming from equations (12)} (20):

k"24(b
0
!b

2
)/5a

0
¸4, k"72(b

1
!b

3
)/5a

1
¸4, (101, 102)

k"!144(b
2
!b

4
)/(6a

0
!5a

2
)¸4, k"!240(b

3
!b

5
)/(6a

1
!5a

3
)¸4, (103, 104)

F

k"!12(i#1)(i#2)(b
i
!b

i`2
)/(6a

i~2
!a

i~4
!5a

i
)¸4, for 4)i)m, (105)

F

k"!12(m#2)(m#3)(b
m`1

!b
m`3

)/(6a
m~1

!a
m~3

)¸4, (106)

k"!12(m#3)(m#4)(b
m`2

!b
m`4

)/(6a
m
!a

m~2
)¸4, (107)

k"12(m#4)(m#5)b
m`3

/a
m~1

¸4, k"12(m#5)(m#6)b
m`4

/a
m
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Compatibility conditions demand that all these expressions, as representing the same
natural frequency coe$cient, to be equal.

Reference [2] dealt with two cases: (1) material density coe$cients a
i
were speci"ed and

elastic modulus coe$cients were determined; and (2) elastic modulus coe$cients b
i
were

speci"ed, whereas material density coe$cients have to be evaluated. In this paper, for
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simplicity, we treat only the "rst case. One can consult reference [2] for the details of the
second case, for the pinned}pinned beam.

Equations (101)} (109), in conjunction with the knowledge of the coe$cients a
i
, permit us

to obtain a closed-form solution of the natural frequency.
We assume the material density (a

i
"0,2,m) coe$cients to be known. From the

equations (101)}(109), we can compute the coe$cient b
i
. Firstly, let us observe equation

(109). The knowledge of b
m`4

leads to the natural frequency. Moreover, b
m`4

and a
m

have
the same sign (due to the positivity of k). Secondly, we need only one coe$cient b

i
to

determine all b
j
, jOi. This is due to the recursive form of equation (101)} (109). We assume

that the coe$cient b
m`4

is known. Then, we calculate the other coe$cients b
i
,

i"0,2, m#3. From equation (108) in conjunction with equation (109), we get
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Analogously, equations (106) and (108) yield
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Equation (105), with i"m and equation (107) result in
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Equation (105), with i"m!1, and equation (106) becomes
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We need to calculate b
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and b
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in order to use the general expression of b
i

for
4)i)m!2:
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Note that equation (115) is only valid for i)m!2 because of the coe$cient a
i`2

.
Indeed, i#2(m#1. Just as m!1'i'3 (due to the coe$cient a

i~4
), we must have

m'4 (this explains why cases m)4 are particular cases). Now, we calculate the coe$cients
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Equation (103) results in
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From equation (102), we obtain
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Equation (101) gives
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Figure 6 portrays the function, for m"15, E(m)/b
16

with a
i
speci"ed as 16 !i.

From equation (109) in view of equation (2), we deduce the natural frequency squared,

u2"12(m#5)(m#6)b
m`4

I/a
m
A¸4 (120)

which, remarkably, coincides with its counterpart for the pinned}pinned beam [2]. Still, the
expression for coe$cients b

j
di!er for these two cases. It is also notable that by formally

substituting m"0, 1, 2, 3, 4, we get the expressions derived in equations (32), (46), (62), (80),
(100), respectively.

7. CONCLUSIONS

Apparently for the "rst time in the literature we obtained closed-form solutions for the
natural frequencies of the inhomogeneous beams with one sliding support as well as the other
pinned. We hope that this study, as well as its companions, references [1}3], will arouse



Figure 6. Variation of E(m)/b
16

, m3[0; 1], o (m)"+15
0

(16!i)mi .

LETTERS TO THE EDITOR 539
intensi"ed search for additional closed-form solutions for inhomogeneous and/or
non-uniform structures.
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